Search results

Search for "colloidal stability" in Full Text gives 80 result(s) in Beilstein Journal of Nanotechnology.

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • avenue for overcoming the limitations associated with poor solubility and stability of monoterpenes. This study sheds light on the potential of the nanoemulsions as effective and environmentally friendly insecticides in the ongoing battle against mosquito-borne diseases. Keywords: colloidal stability
  • at the tested concentrations. Conclusion The rHLB values for cymene and myrcene were 15 and 16, respectively. These formulations demonstrated good colloidal stability over 60 days with stable values of size, PdI, and zeta potential. In vitro release studies demonstrated that the encapsulation of
  • range of 10.0–16.7, and the rHLB was the one in which the formulation had the best colloidal stability (Table S1, Supporting Information File 1). Characterization of the nanoemulsions Visual appearance The formulations obtained were maintained at room temperature and evaluated visually 24 h and 7, 14
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • tensions that promote the formation of very small droplets. However, since the colloidal stability is very low, the systems need to be quenched to lower temperatures to obtain kinetically stable nanoemulsions [10][11]. In contrast, the PIC method (also called emulsion inversion point method) [12][13
  • were obtained upon solvent removal. High colloidal stability (longer than three months without sedimentation), high encapsulation efficiency (>99%), slow drug release (only 15% of the drug after five days), and low cytotoxicity against HeLa cells (cell viability > 80%) were observed. In vivo tests
  • by TEM) were surface-decorated with carbosilane cationic dendrons via carbodiimide chemistry [54] for conjugation with antisense oligonucleotides (ASO). The conjugated nanoparticles with a hydrodynamic diameter between 80 and 160 nm (depending on dendron generation) showed high colloidal stability
PDF
Album
Review
Published 13 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • storage time than bare NPs because of the higher colloidal stability of the prepared colloidal particles [53]. In one study, liver cancer cell membrane-encapsulated PLGA NPs maintained a stable size in water and PBS for a long time, while bare PLGA NPs progressively grew larger (Figure 4B) [31]. 3
  • oxidation, improve biocompatibility, enhance colloidal stability, and enhance targeting), enabling the ablation of tumor tissues by thermal energy [79]. MDA-MB-231 cell membrane-coated NPs loaded with superparamagnetic iron oxide nanoparticles (SPIONs) and PTX were designed for the combination treatment of
  • by enhancing proton relaxation in tissues [120]. Among them, superparamagnetic iron oxides (SPIONs) are widely used with numerous advantages, such as small size, colloidal stability, low toxicity, magnetic heating properties, and enhanced molecular MRI [121]. However, SPIONs cannot be effectively
PDF
Album
Review
Published 27 Feb 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • reduction of nanoparticle diameter below the critical size of 25 nm leads to nanoparticles with superparamagnetic properties [10][11]. Due to the absence of coercive forces in superparamagnetic nanoparticles not exposed to an external magnetic field, they are characterized by good colloidal stability, which
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • -inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complementary spectroscopic techniques, such as UV–vis, ζ-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD
  • obtain metallic NPs, particle growth, colloidal stability, as well as the biological profile of the resulting products are generally attributed to the phenolic and/or the carbohydrate components of the capping natural source [12]. Particularly interesting are Au/Ag bimetallic systems with a core–shell
  • , Figure 1) achieved by supramolecular assembly of the components as well as their physicochemical characterization in terms of size and colloidal stability. The drug binding ability of nanoGS with Pent has been investigated by complementary spectroscopic techniques such as UV–vis, zeta potential (ζ
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • increasing pH from 4 to 7.4, from approximately −17 to −25 mV, was observed, indicating a better colloidal stability of Nα-Lys-NG nanogel at pH 7.4. This is caused by the fact that the polypeptide chains of Nα-Lys-NG nanogel are more relaxed and expanded due to the presence of zwitterionic lysine-based
PDF
Album
Full Research Paper
Published 22 Jun 2022

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • 59.4 emu/g (Figure 1c) and stronger absorption intensities at the NIR wavelength of 808 nm than individual nanoparticles [17]. In addition, the dynamic light scattering (DLS) analysis of NPCs suspended in aqueous culture medium reflected good dispersion (Figure 1d). The colloidal stability of our
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • penetration and hemocompatibility which can be useful for biomedical applications [12][17]. Furthermore, in order to be exploited in biomedical applications, NPs need to fulfill certain criteria which include water solubility, excellent colloidal stability, biocompatibility, and high saturation magnetization
  • hydrophobic NPs was achieved by the functionalization with an amphiphilic brush copolymer, poly(isobutylene-alt-maleic anhydride) (PMA) implanted with dodecylamine, which provides biocompatibility, colloidal stability, and hydrophilicity [22]. It is composed of hydrophobic side chains and the backbone of
  • functionalized with anticancer drugs, such as doxorubicin (DOX) and methotrexate (MTX) via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) chemistry. The samples were stored at room temperature for further experiments. Our aim was to compare the biocompatibility, colloidal stability, and in vitro
PDF
Album
Full Research Paper
Published 02 Dec 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • , biocompatibility, sustainability, and low cost, achieving the real potential in nanobiotechnology is not far. Carrageenan as green/safe stabilizing agent in nanomaterial synthesis A stabilizing agent, often known as capping agent, is one of the vital components in the synthesis of nanomaterials. The colloidal
  • stability of the nanoparticles is governed by the capping agent, which prevents the aggregation of nanoparticles. Several capping agents such as CTAB, citrate, polymers, and carbohydrates are extensively used to stabilize nanoparticles in their colloidal state [99]. The capping agents govern the
PDF
Album
Review
Published 18 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • . Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration. Colloidal stability, biochemical
  • significantly affect AgNPs and determine their colloidal stability and cellular interactions as evidenced earlier [27][31][32][33]. In the acidic medium of the stomach, AgNPs both agglomerate and dissolve [15][26][34]. The transformation will likely be incomplete due to protein corona formation and short
  • different biological environments during their in vivo journey. The colloidal stability, size, charge, and dissolution behaviour of AgNPs stabilized with neutral, positively, and negatively charged coating agents were determined after incubation in artificial media (depicted in Table 1) as well as in real
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells

  • Sahar Pourhoseini,
  • Reilly T. Enos,
  • Angela E. Murphy,
  • Bo Cai and
  • Jamie R. Lead

Beilstein J. Nanotechnol. 2021, 12, 282–294, doi:10.3762/bjnano.12.23

Graphical Abstract
  • ][57] and protect them from dissolution and aggregation in complex media [42][43]. Z-average hydrodynamic diameter and PDI of pristine PVP-AgNPs were measured using DLS with a Malvern Zetasizer NanoZS (Malvern Instruments, MA, USA). The colloidal stability (zeta potential) of PVP-AgNPs was measured by
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • 40–50 nm in diameter [14], or glycosylphosphatidylinositol (GPI)-anchored proteins [15]. Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their biocompatibility, colloidal stability, and bioavailability. Moreover, the coating facilitates their further
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • other hand, organic coating (particularly polymers) has a number of advantages over inorganic coating, such as better particle dispersion, good colloidal stability, biocompatibility, good nanoparticle circulation in the blood, reduced toxicity and low risk of blood capillary obstruction. In the last
PDF
Album
Full Research Paper
Published 12 Aug 2020

Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer

  • Sébastien Gottis,
  • Régis Laurent,
  • Vincent Collière and
  • Anne-Marie Caminade

Beilstein J. Nanotechnol. 2020, 11, 1110–1118, doi:10.3762/bjnano.11.95

Graphical Abstract
  • located in this linkage with a noticeable electronic delocalization [42]. Thus, the presence of P=N–P=S linkages in the precursor is desirable. The precursor should induce the persistent colloidal stability of the nanoparticles in water. It has been already shown that the Girard’s T reagent (acethydrazide
  • trimethylammonium chloride), used as a terminal function in dendrimers, can induce dendrimer solubility in water, allowing the colloidal stability of nanolatex covered by such a function and also the formation of structured hydrogels [43][44]. Hydrazine is a well-known reductant, which has been used for the seeded
PDF
Album
Supp Info
Letter
Published 28 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • circulation time than dextran-coated SPIONs [39], having better colloidal stability and reduced agglomeration tendency. In addition, very importantly, the PEG coating did not degrade the magnetization properties of the nanoparticles [82]. Chen et al. [40] showed that SPIONs functionalized with PEG, grafted
  • increase in macrophages. The general consideration is that polymer coating offers colloidal stability, but in fact PVA-coated SPIONs are only stable in water at a certain pH value. In cell culture medium they agglomerate. Studies showed that the components of the medium, and not the calf serum added to the
PDF
Album
Review
Published 27 Jul 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • (Table 3). The low polydispersity index (PDI) indicates high colloidal stability and narrow size range distribution. The hydrodynamic diameter of the samples measured by DLS was similar to that measured by NTA, with the exception of the large samples, where the detected diameter with the latter technique
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • extended to weak PE assemblies [26]. The dissolution of a SiO2 core in a poly(allylamine hydrochloride) (PAH)/poly(methacrylic acid) (PMA) assembly with ammonium fluoride (NH4F) at a suitable pH contributed to both multilayer stability and colloidal stability as shown in the AFM images in Figure 2a–d [24
  • at pH 4.5 resulted in a thin and smooth capsule [27]. Similarly, biodegradable cores of polylactic acid polymer have also been investigated with several PEs, but limited by poor colloidal stability [28]. In contrast to the above-mentioned studies, inorganic templates such as carbonates are larger in
PDF
Album
Review
Published 27 Mar 2020

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

  • María Sanromán Iglesias and
  • Marek Grzelczak

Beilstein J. Nanotechnol. 2020, 11, 263–284, doi:10.3762/bjnano.11.20

Graphical Abstract
  • stability to the nanoparticles, thus ensuring colloidal stability at a higher salt concentrations. On the contrary, the perfect match sequence (mutation-free 5′ terminus) formed a rigid double-stranded DNA (dsDNA) on the particle surface, decreasing steric and electrostatic repulsions, thereby causing
  • complementary DNA, the colloidal stability was recovered because of the hybridization of the negatively-charged DNA with the neutral PNA-modified AuNPs. The group of Graham has reported the functionalization of AuNPs (13 nm) with LNAs, revealing a remarkable binding affinity and selectivity towards DNA targets
  • the formation of the branched junctions altered the colloidal stability of the nanoparticles, leading to a gradual aggregation. The detection limit of this method was 7.7 fM. With the aim of improving the sensitivity of the plasmon-based colorimetric sensor, Ying and co-workers [82] have used gold
PDF
Album
Review
Published 31 Jan 2020

Long-term stability and scale-up of noncovalently bound gold nanoparticle-siRNA suspensions

  • Anna V. Epanchintseva,
  • Julia E. Poletaeva,
  • Dmitrii V. Pyshnyi,
  • Elena I. Ryabchikova and
  • Inna A. Pyshnaya

Beilstein J. Nanotechnol. 2019, 10, 2568–2578, doi:10.3762/bjnano.10.248

Graphical Abstract
  • suspension at 4 °C for different times resulted in the formation of particle clusters of high colloidal stability as demonstrated by conventional methods. These clusters completely disintegrated when albumin was added, indicating that they are agglomerates (and not aggregates) of AuNP-siRNA. The AuNPs-siRNA
  • of physicochemical characteristics and siRNA surface density for a long period. Keywords: colloidal stability; gold nanoparticles; scale-up; siRNA delivery; siRNA duplex stability; therapeutic nucleic acids; Introduction Drug delivery to cells is only one application of nanoparticles in biomedicine
  • that the freshly prepared suspension is homogeneous and has high colloidal stability in various solutions, except for the DMEM medium. A ten-fold increase in the reaction volume led to a decrease of about 10% in the surface density of AuNP-siRNA nanoconstructions, which caused changes in the
PDF
Album
Supp Info
Full Research Paper
Published 23 Dec 2019

Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells

  • Mohammad J. Akbar,
  • Pâmela C. Lukasewicz Ferreira,
  • Melania Giorgetti,
  • Leanne Stokes and
  • Christopher J. Morris

Beilstein J. Nanotechnol. 2019, 10, 2553–2562, doi:10.3762/bjnano.10.246

Graphical Abstract
  • -PEG2000-cystabn conjugate (B). Colloidal stability of liposomes. Control and target liposomes were exposed to PBS (A,C) or 10% FBS in PBS (B,D) at three temperatures for 24/72 h then analysed by DLS. Data shown are mean ± SD, n = 3. GRPR targeting with cystabn increases cell accumulation of liposomes. (A
PDF
Album
Full Research Paper
Published 19 Dec 2019

Small protein sequences can induce cellular uptake of complex nanohybrids

  • Jan-Philip Merkl,
  • Malak Safi,
  • Christian Schmidtke,
  • Fadi Aldeek,
  • Johannes Ostermann,
  • Tatiana Domitrovic,
  • Sebastian Gärtner,
  • John E. Johnson,
  • Horst Weller and
  • Hedi Mattoussi

Beilstein J. Nanotechnol. 2019, 10, 2477–2482, doi:10.3762/bjnano.10.238

Graphical Abstract
  • for this study, due to their compact size, enhanced colloidal stability, and reduced non-specific interactions in biological media [22][24][25][26][27][28][29][30][31]. The central QDs used to build up the hybrid assemblies were prepared via encapsulation within a polymer coating made of an amine
  • ]. In a control experiment, using citrate-stabilized AuNPs in a similar assay, the hybrid self-assembly precipitated within few minutes. This behaviour is attributed to the nature of the citrate coating (weak stabilizer), and further proves that using LA-ZW-AuNPs enhances their colloidal stability of
  • the bound MBP stays functional [8][23][28]. Further details are available in Supporting Information File 1. After confirming the structural integrity and colloidal stability of the nanohybrids, we then proceeded to probe their interactions with HeLa cell cultures. For this, dispersions made of
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • stepwise growth, falls below −40 mV, the particles can be dispersed in an ammoniacal ethanol solution and grown further by the continuous addition of tetraethyl orthosilicate to a diameter larger than 500 nm. Due to the high colloidal stability, a coalescence of the particles can be suppressed, and single
  • −20 mV, which explains the low colloidal stability of these particles. The latter was also confirmed by the rather high hydrodynamic diameter of the particles derived from DLS compared to the diameter obtained by STEM (see below in Table 1). A similarly low colloidal stability of the NPs coated with
  • indicate low colloidal stability of the particles, which is also supported by the high PDI values suggesting partial aggregation (Table 1). Repeated centrifugation and redispersion in ethanol were carried out in an attempt to improve the colloidal stability by removing the remaining surfactant from the
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019
Other Beilstein-Institut Open Science Activities